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Structural heterogeneity, thermal spring distribution, and geothermal energy potential along the Southern Rocky Mountain Trench
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Also note the presence of overturned beds in the hanging wall of the Lussier River Fault. The Wildhorse thermal spring is likely con-
trolled by the Lussier River Fault, and has an estimated source depth of 2.8km
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Section 5. Geophysically constrained cross-section near Canal Flats, BC, after van der Velden and Cook 
(1996). Note projected locations of 4 thermal springs. The source of Red Rock, Lussier, and Ram Creek 
Springs is believed to be along Lussier River/Redwall Fault. Source depth of Buhl Creek Spring is un-
known, but likely controlled by the Buhl Creek Fault.
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Section 2. Geological cross section of the SRMT at Kinbasket lake after Murphy (2007). RMT is bounded to the SW by the RMTF, and to the NE by an unamed thrust 
fault. Note location of the Canoe River Spring coincident with the RMT normal fault. The source of this spring is far below the constrained part of the cross-section.
Section 1A: Resistivity cross section from magnetotelluric survey across Kinbasket Lake. Conductors (warm colours) may indicated the presence of �uids.
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Section 1. Geological cross section of the SRMT at Valemount, BC, after McDonough and Murphy (1994). 
RMT is bounded to the SW by the Purcell Thrust, and to the NE by the Rocky Mountain Trench Fault.
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Figure 1. Map of the SRMT. Major and notable faults are shown in red: BT - Bearfoot 
Thrust; CCT - Chatter Creek Thrust; CRF - Columbia River Fault; EF - Esplanade Fault; 
LRF - Lussier River Fault; MLT - Moose Lake Thrust; PT - Purcell Thrust; RWF - Redwall 
Fault; RMTF - Rocky Mountain Trench Fault; SLF - Slocan Lake Fault; TAF - Thomp-

blue. Thermal springs occuring along the SRMT are denoted with asterisks. Note the 
conspicuous gap between the southern cluster and the Canoe River Spring.

Abstract
In the Canadian Cordillera, thermal springs tend to occur in association with major faults. Several thermal 
springs occur along the Southern Rocky Mountain Trench (SRMT), indicating the possibility of a fault-hosted 
geothermal system. Here, we compile structural and geophysical data from the vicinity of the SRMT to pro-
vide a synthesis of the interpreted subsurface. Locations and estimated circulation depths of thermal spring 
systems along the SRMT are compared against mapped geological structures, and simple hydrogeological 
models are proposed for each spring. We evaluate the broad relations between fault kinematics and spring 
occurrence, and consider possible reasons for the notable lack of thermal springs between the latitudes of 
51°N and 52.5°N. There is much uncertainty regarding the kinematic history and subsurface geometry of sev-
eral faults, and further targeted structural and geophysical mapping is required.

Thermal Springs and Geothermal Potential
•Several thermal springs occur along the RMT (Fig. 1; Woodsworth & Woodsworth, 2014), which is suggestive 

•
structural geology are critical when using thermal springs as geothermal exploration tools. 

•There is a notable lack of springs between 51°N and 52.5°N (see Fig. 1). Grasby & Hutcheon (2001) suggested 

•
have compiled existing structural interpretations along the SRMT. 

Geological Setting
• The Southern Rocky Mountain Trench (SRMT) is a major fault-controlled valley stretching from northern 

Montana to central-eastern British Columbia (van der Velden & Cook, 1996).
•The SRMT parallels the structural grain of the Canadian Rocky Mountains and appears to approximately par-

allel the edge of the North American cratonic basement, which tapers to the west (Monger et al., 1972).
•Stratigraphic units of Proterozoic to Mesosoic age appear continuous across the the SRMT (e.g., van der 

Velden and Cook, 1996) and it is therefore not generally considered to be a major terrane boundary.
•Highly metamorphosed rocks of the Kootenay and Omineca core complexes outcrop only to the west of the 

SRMT. Near Valemount, a small block of metamorphic rocks - the Malton Gneiss Complex - occurs within the 
SRMT (Murphy, 2007).

• -
veloped during the Cretaceous-Paleocene Cordilleran Orogeny. 

•In the mid-Cenozoic, extensional faulting occurred in the SRMT on the Rocky Mountain Trench (RMT) Fault, 
which runs along much of the length of the trench, cross-cutting the Cretaceous-paleocene thrust faults 
and folds (van der Velden and Cook, 1996).   

•There is evidence for dextral shear near Valemount (Murphy, 1990), which may be a zone of transition into 
large-scale Eocene dextral displacement along the Northern Rocky Mountain Trench and Tintina Trench to 
the north (e.g., Gabrielse et al., 2006). 

Discussion
•In general, locations of thermal springs appear to be associat-

ed with fault structures, although this could simply be a coin-
cidence of topography: both springs and faults tend to occur 
in valleys. 

•No distinct relation between fault kinematics and spring oc-
curence is immediately apparent.

•As suggested by Grasby and Hutcheon (2001), cross-sections 

of 51°N (Sections 5 and 6), and very little to no displacement 
near Golden (Section 4).

•However, the locations of several springs appear to be related 
to the Redwall/Lussier River Fault (mapped as a thrust), rather 
than the RMT Fault (normal).

•Extensional faults are generally better conduits for water due 
to their inherent stress regime (Bense et al., 2013). Perhaps the 
Redwall/Lussier Fault has been reactivated as a normal struc-
ture?

•With the exception of the Wolfenden spring at its southern 
end, the Purcell Thrust hosts no thermal springs. It may be im-

•Fault age and activity are important factors in determining 
fault permeability and may be more important than kinemat-
ics. Older faults (e.g., Purcell Thrust) eventually become 
clogged with mineral precipitate (Bense et al., 2013; Curewitz 
and Karson, 1997).

•In Section 3, the Purcell Thrust is blind, and intersects the RMT 
fault in the upper 1000m. Circulating groundwater might in-

•The Canoe River spring appears to be associated with the RMT 
-

cant extension occurs here after dwindling between 51°N and 
52°N.

•Geothermometry data (Table 1) for the Canoe River spring 
suggest a much deeper and hotter source than all the springs 
to the south. It is unclear why these spring waters reach such 

-
cal geothermometer is used (Fairbank and Faulkner, 1992); it 
would be worth re-examining this analysis. 

Future Work
•Constraints on geological structure are limited and not harmo-

assumptions about regional tectonics.
•Modernization of historical geological cross-sections would be 

helpful in understanding this structure and its relation to ther-
mal spring distribution.

•Future work will be focussed on re-drafting geological 
cross-sections for selected locations along the SRMT. Further 
constraints should be imposed via geological mapping and 
geophysical surveying. 
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Table 1. Outlet temperatures and max temperatures derived 
from geothermometry of each spring (Grasby and Hutcheon, 
2001; Fairbank and Faulkner, 1992). Depths are estimated 
based on a geothermal gradient of ~21 °C/km. 
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