Multivariate Data Analysis of Post Combustion CO₂ Capture

Kasturi Nagesh Pai¹, Sai Gokul Subraveti¹, Arvind Rajendran¹, Vinay Prasad¹, Zukui Li¹

FES PROJECT OVERVIEW

Hydrocarbons will continue to serve as an essential energy source while the world transitions to a lower-carbon energy economy, but can we prevent the use of those fuels from contributing to the accumulation of CO_2 in the atmosphere? Existing technologies can capture carbon, but these methods can be costly and energy-intensive. Extracting energy without burning fuels, improving CO_2 capture efficiencies if they are burned, and finding effective ways to store or reuse captured carbon may be essential to ensuring it does not enter the atmosphere.

¹Dept of Chemicals and Materials Engineering, 116th st 89th Ave, Edmonton, Alberta.

