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Compound Element in position 4c (reported) Element in position 4c 
(ML Suggested)

MnCoSb Sb(32% probability) Co(74% probability)

AIMS AND OBJECTIVES

Classification of Half-Heusler Compounds
Using A Machine Learning Approach

Alex Gzyl, Anton O. Oliynyk, Lawrence A. Adutwum, and Arthur Mar

The model is able to determine which element occupies tetrahedral vs. octahedral
sites, distinguish between ternary compounds that half-Heusler and those that are
not, and predict half-Heusler compounds. Proper classification is important to
establish a structure-property relationship. Potential applications for half-Heusler
compounds are listed below.

FES PROJECT OVERVIEW

Half-Heusler compounds form a large
versatile class of solids with cubic
structures having many applications as
thermoelectric materials, spintronic
materials, superconductors, and topological
insulators. Many half-Heusler compounds
conform to a structural description that
combines features of the more covalent
zincblende-type (ZnS) and more ionic
rocksalt-type (NaCl) structures. However,
there are notable exceptions (such as
MgAgAs, GdPtSb, and PdHoBi) that do not.
We have applied machine-learning
approaches(through a support vector
machine model) to classify, verify, and
predict half-Heusler compounds.

BACKGROUND

RESULTS

FUTURE DIRECTIONS

The model can successfully predict which site
(Octahedral vs Tetrahedral) an element would prefer
to occupy. We can then apply this to other systems
with similar problems concerning site occupancy.

Determination of the correct structure will accelerate
discovery of novel thermoelectric, spintronic and
superconducting materials.

MgAgAs-type (half-Heusler)
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1. Atomic number
2. Atomic weight
3. Atomic radius
4. Covalent radius
5. Metallic radius
6. Single bond radius
7. Zunger radii sum
8. Ionic radius
9. Crystal radius
10.Pauling electronegativity
11.Martynov-Batsanov electronegativity
12. Gordy electronegativity
13. Mulliken electronegativity
14.Allred-Rochow electronegativity
15. Metallic valence
16.Number of valence electrons
17.Number of outer shell electrons
18. Thermal conductivity
19. Heat atomization
20. Polarizability
21. Gilmor # of valence electrons
22. Metal\Metalloid\nonmetal

23. Miracle radius
24. Mendeleev number
26. Period number
27. Group number
28. Family number
29. l quantum number
30. Melting point
31. Boiling point
32. Density
33. First ionization energy
34. Electrical conductivity
35. Specific heat
36. Heat of fusion
37. Heat of vapourization
38. Valence s
39. Valence p
40. Valence d
41. Valence f
42. Unfilled s
43. Unfilled p
44. Unfilled d
45. Unfilled f

FeaturesSVM Models (a) before and 
(b) after Feature Selection

Before FS After FS

MCC 0.798 0.900

Precision 0.871 0.925

F1 0.864 0.933

Error 0.089 0.966

The model can be used to perform data sanitizing
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Single crystal diffraction 
data suggests the 
structure different from 
half-Heusler:

MnCoSb-type, known as
2x2x2 half-Heusler
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Element in position 4c 
(reported)

Element in position 4c 
(ML Suggested)

Element in position 4c 
(reported)

Element in position 4c 
(ML Suggested)

Sb(8.7% probability) Pt(90.5% probability) Bi(4.9% probability) Pd(92.5% probability)
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Also, the model can highlight structurally ambiguous compounds
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T12-P01 "High-throughput materials discovery through materials genomics"
Discovering better materials is essential for tackling the enormous challenges in developing new renewable energy sources. The experimental variables that must be considered to
optimize a given property are too many and their relationships are too complex to allow anything but incremental improvements to be made. So how do we think "outside the box" to find
entirely new materials? As part of the larger effort known as the "Materials Genome Initiative," approaches based on data-mining and materials informatics techniques can help screen
new compounds with desired properties and features, at greatly accelerated rates, and provide insights into the design principles required to engineer improved materials. These tools will
be used, in particular, to find better photovoltaics and catalysts for solar fuels.


