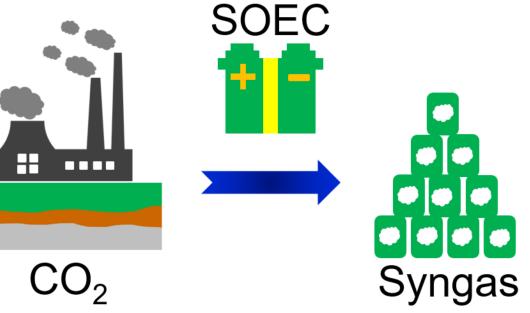

Advanced Electrochemical System for Energy Storage Through CO₂ Conversion

Wan-Ying Pang, Bin Hua, Meng Li, Jing-Li Luo, Zhe-Hui Jin


BACKGROUND

In Canada, over half of CO_2 emissions come from transportation or the oil and gas industry. Global warming is the result of enhancing the atmospheric greenhouse affect by the constant addition of greenhouse gases into the atmosphere from industrial emissions.

AIMS AND OBJECTIVES

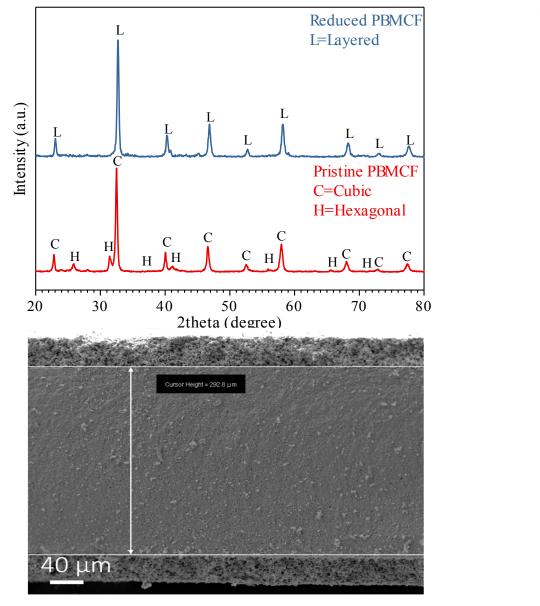
Development of a stable, high performing solid oxide electrolysis cell (SOEC) that demonstrates tunable syngas production from CO₂ and steam at the cathode, and a pure O₂ stream at the anode, while also serving to s

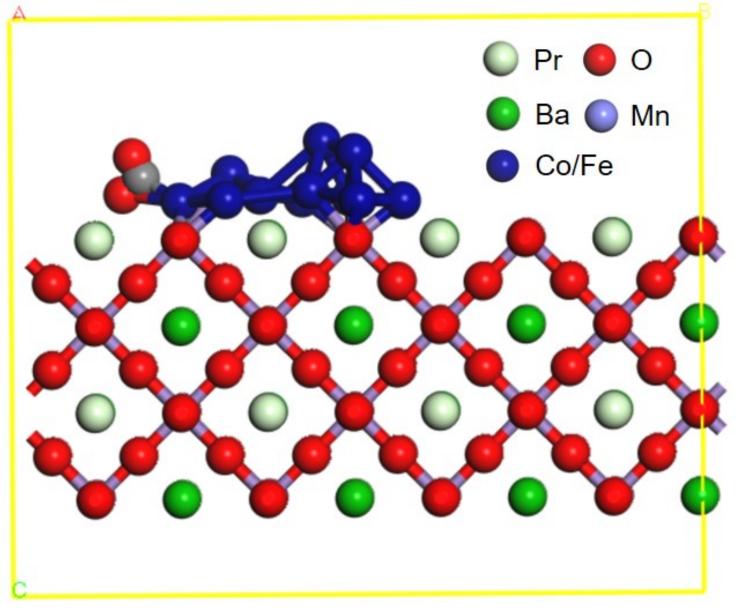
stream at the anode, while also serving to store renewable and excess grid electricity.

 \succ Exploration of the mechanism of CO₂ adsorption and activation on

CO₂ utilization: One of the best options for the future of green technology integration

the surface of catalysts by using DFT calculation.


RESULTS


Catalyst for CO₂ conversion and cell fabrication

- Catalyst Selection: Co and Fe co-doped Pr_{0.5}Ba_{0.5}MnO₃ (PBMCF)
 - The phase of PBMCF will transfer from simple perovskite into layered double perovskite under reduction conditions.
 - Doped Co and Fe will exsolve under reduction conditions and form CoFe alloy nanoparticles on the catalyst surface.
- SOEC Fabrication: YSZ electrolyte supported cell

Density functional theory (DFT) simulation

- Crystal Structure Optimization
 - Create and optimize the PBMCF models before and after reduction.
 - Investigate the energy change of phase transition.

(Top) X-ray diffraction

Schematic image of adsorption configuration of CO_2 on PBMCF surface

- \succ Chemical adsorption/activation of CO₂ on the catalyst surface
 - Create and optimize the adsorption model.
 - Investigate the CO₂ adsorption sites on the catalyst surface.

patterns of PBMCF before and after reduction. (Bottom) SEM image of YSZ supported SOEC.

FUTURE DIRECTIONS	PARTNERS
Performance improvement	Viola Birss
 Optimize the doping amount of Co and Fe. Optimize the microstructure of SOEC cell. 	Department of Chemistry, University of Calgary
Investigate the interface between PBMCF perovskite and the	Jian Chen
exsolved CoFe alloy nanoparticles.	National Institute for Nanotechnology, National
Theoretic investigation	Research Council Canada
Density of states (DOS) and bandstructures of PBMCF perovskite	Jian Li
before and after phase transition. Charge density difference of PBMCF with exsolved CoFe alloy	Department of materials science, Huazhong
nanoparticles on its surface.	University of Science and Technology

FES PROJECT OVERVIEW

Hydrocarbons will continue to serve as an essential energy source while the world transitions to a lower-carbon energy economy, but can we prevent the use of those fuels from contributing to the accumulation of CO_2 in the atmosphere? Existing technologies can capture carbon, but these methods can be costly and energy-intensive. Extracting energy without burning fuels, improving CO_2 capture efficiencies if they are burned, and finding effective ways to store or reuse captured carbon may be essential to ensuring it does not enter the atmosphere.

¹Institution Details, Address, Location, ²Institution Details, Address, Location, ³Institution Details, Address, Location

